Disjoint Hamilton cycles in the star graph

نویسندگان

  • Roman Cada
  • Tomás Kaiser
  • Moshe Rosenfeld
  • Zdenek Ryjácek
چکیده

In 1987, Akers, Harel and Krishnamurthy proposed the star graph Σ(n) as a new topology for interconnection networks. Hamiltonian properties of these graphs have been investigated by several authors. In this paper, we prove that Σ(n) contains bn/8c pairwise edge-disjoint Hamilton cycles when n is prime, and Ω(n/ log log n) such cycles for arbitrary n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry and optimality of disjoint Hamilton cycles in star graphs

Multiple edge-disjoint Hamilton cycles have been obtained in labelled star graphs Stn of degree n-1, using number-theoretic means, as images of a known base 2-labelled Hamilton cycle under label-mapping automorphisms of Stn. However, no optimum bounds for producing such edge-disjoint Hamilton cycles have been given, and no positive or negative results exist on whether Hamilton decompositions ca...

متن کامل

Automorphisms generating disjoint Hamilton cycles in star graphs

In the first part of the thesis we define an automorphism φn for each star graph Stn of degree n − 1, which yields permutations of labels for the edges of Stn taken from the set of integers {1, . . . , bn/2c}. By decomposing these permutations into permutation cycles, we are able to identify edge-disjoint Hamilton cycles that are automorphic images of a known two-labelled Hamilton cycle H1 2(n)...

متن کامل

Maximal sets of hamilton cycles in complete multipartite graphs

A set S of edge-disjoint hamilton cycles in a graph G is said to be maximal if the edges in the hamilton cycles in S induce a subgraph H of G such that G EðHÞ contains no hamilton cycles. In this context, the spectrum SðGÞ of a graph G is the set of integersm such that G contains a maximal set of m edge-disjoint hamilton cycles. This spectrum has

متن کامل

Edge-disjoint Hamilton Cycles in Regular Graphs of Large Degree

Theorem 1 implies that if G is a A:-regular graph on n vertices and n ^ 2k, then G contains Wr(n + 3an + 2)] edge-disjoint Hamilton cycles. Thus we are able to increase the bound on the number of edge-disjoint Hamilton cycles by adding a regularity condition. In [5] Nash-Williams conjectured that if G satisfies the conditions of Theorem 2, then G contains [i(n + l)] edge-disjoint Hamilton cycle...

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2009